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In this talk, I shall discuss the geometry of spacetime from the
point of view of geometry.

I. Riemannian Geometry

The concept of geometry had gone through a radical change in the
19th century, thanks to the contributions of Gauss and Riemann.
Riemann revolutionized our notions of space, freeing up
mathematics in the process.

Gauss Riemann
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Objects no longer had to be confined to the flat, linear space of
Euclidean geometry. Riemann instead proposed a much more
abstract conception of space —of any possible dimension— in
which we could describe distance and curvature. In fact, one can
develop a form of calculus that is especially suited to such an
abstract space.
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About 50 years later, Einstein realized that this kind of geometry,
which involved curved spaces, was exactly what he needed to unify
Newtonian gravity with special relativity. This insight culminated
in his famous theory of general relativity.

Einstein Curved Space-time

4



Geometry, topology and partial differential equations are the three
major branches of mathematics that provide the major tools to
understand space time. Here geometry includes subjects such as
algebraic geometry and group representation theory. Along with
intuitions based on physical principles, they gave beautiful
descriptions of the universe.
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A very important tool for understanding the interactions between
topology and geometry comes from analysis, mostly based on
partial differential equations. The power of linear elliptic equation
can be seen from the application of Atiyah-Singer index formula.
The large scale development of nonlinear theory started around the
seventies, and the subject is called geometric analysis.

In the past 40 years, my research has been focus on understanding
the relation between topology and curvature. And as such, I found
out that my works have been somewhat interesting to my friends
in the physics department.
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II. General Relativity

We learned through special relativity that space and time should
not be treated separately but should instead be merged together to
form spacetime. Einstein struggled in his attempt to obtain a
fundamental description of gravity. But he got some help from his
friend Marcel Grossman, a mathematician, who told him of the
work of other mathematicians, Riemann and Ricci.

Riemann provided the framework of abstract space, as well as the
means for defining distance and curvature in such a space.
Riemann thus supplied the background space or setting in which
gravity, as Einstein formulated it, plays out.
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But Einstein also drew on the work of Ricci, who defined a special
kind of curvature that could be used to describe the distribution of
matter in spacetime. In fact, the Ricci curvature can be viewed as
the trace of the curvature tensor. A remarkable feature of this
curvature is that it satisfied the conservation law due to the
identity of Bianchi. And it was exactly this conservation law that
enabled Einstein to provide a geometric picture of gravity. Rather
than considering gravity as an attractive force between massive
objects, it could instead be thought of as the consequence of the
curvature of spacetime due to the presence of massive objects.
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Einstein commented on his work:“Since the gravitational field is
determined by the configuration of masses and changes with it, the
geometric structure of this space is also dependent on physical
factors,” he wrote. “Thus, according to this theory, space
is–exactly as Riemann guessed–no longer absolute; its structure
depends on physical influences. [Physical] geometry is no longer an
isolated, self-contained science like the geometry of Euclid.”
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Reflecting on his accomplishment, Einstein wrote, “In the light of
the knowledge attained, the happy achievement seems almost a
matter of course, and any intelligent student can grasp it without
too much trouble. But the years of anxious searching in the dark,
with their intense longing, their alternations of confidence and
exhaustion, and the final emergence into the light–only those who
have experienced it can understand that.”

Einstein’s struggle to understand gravity is remarkable and his
success in this area even more so. One thing that is resoundingly
apparent is the critical contribution of Riemannian geometry to
that effort.
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When I looked at the equations of Einstein more than a half
century later, I was intrigued by the fact that matter only controls
part of the curvature of spacetime. I wondered whether we could
construct a spacetime that is a vacuum, and thus has no matter,
yet its curvature is still pronounced, meaning that its gravity would
be nonzero. Well, the famous Schwarzschild solution to Einstein’s
equations is such an example. This solution applies to a
non-spinning black hole — a vacuum that, curiously, has mass
owing to its extreme gravity. But that solution admits a singular
point, or singularity - a place where the laws of physics break down.

Black hole
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I became interested in a different situation —a smooth space,
without a singularity, that was compact and closed, unlike the
open, extended space of the Schwarzschild solution. The question
was: Could there be a compact space that contained no
matter— a closed vacuum universe, in other words - whose force
of gravity was nontrivial? I was obsessed with this question and
believed that such a space could not exist. If I could prove that, I
was sure that it would be an elegant theorem in geometry.
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III. Calabi Conjecture

When I started thinking about this in the early 1970s, I did not
realize that the geometer Eugenio Calabi had posed almost the
exact same question. Calabi framed the problem in fairly
complicated mathematical language — involving difficult concepts
like Kähler manifolds, Ricci curvature, and Chern classes — that
ostensibly had nothing to do with physics. Yet his abstract
conjecture could also be framed in terms of Einstein’s theory of
general relativity. The additional information that he put in is that
the space should admit some kind of internal symmetry called
supersymmetry — a term coined by physicists. In that context, the
question that I asked on Einstein’s equation translated to: Can
there be gravity, or the curving of space, in a closed vacuum — a
compact supersymmetric space that has no matter?
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For about three years, my friends and I tried to prove that the class
of spaces proposed by Calabi could not exist. We, along with many
others, considered them to be “too good to be true.” We were
skeptical not only because the conjecture argued for the existence
of a closed vacuum with gravity but also because it implied that
there was a systematic way of constructing many such examples.
Despite the reasons we had for finding Calabi’s argument dubious,
try as we might, we could not prove that such spaces do not exist.
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I announced a counterexample in 1973 in a big geometry
conference in Stanford. Then a serious gap was found. I tried hard
to come up with a new argument, working for two weeks straight
with practically no sleep, pushing myself to the brink of collapse.
Each time I found a possible counterexample, I soon found a subtle
reason as to why it could not work. After many such abortive
attempts, I concluded that the conjecture must be correct after all.
Once I made up my mind, I switched gears completely, putting all
my energies into proving it right. I finally did so, several years
later, in 1976.
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I should say that at the same Stanford conference, the physicist
Robert Geroch gave a talk on an important question in general
relativity called the positive mass conjecture, which holds that the
total mass or energy in any closed physical system must be
positive. Schoen and I eventually proved this conjecture after some
painful contortions (involving minimal surfaces) and a lot of hard
work. The conjecture shows that spacetime, as is described in
general relativity, will not collapse because of negative mass.
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The experience led me to think more about general relativity, and
we proved some theorems about formations of black holes and
clarified the concept of mass of a gravitational system which is not
necessarily isolated.

For example, we proved, in a rigorous manner, that for a general
spacetime, if matter density ρ ≥ 4π2

3r2 in a region of (suitably
defined) radius≤ r , the black hole must form.

The understanding of the quasi-local mass in general relativity is
actually important for the understanding of the geometry of
spacetime. I found a satisfactory answer only recently with Mu-Tao
Wang. It depends on the work of Schoen-Yau, Witten and Liu-Yau.
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My favorable interactions with general relativists also made me
more open to collaborating with physicists in the development of
string theory, although that didn’t come until several years later.

In my proof of the Calabi conjecture, I found a general mechanism
to construct spaces satisfying Calabi’s equations, which are now
called Calabi-Yau spaces. I had a strong sense that I had somehow
stumbled onto a beautiful piece of mathematics. And as such, I
felt it must be relevant to physics and to our deepest
understanding of nature. However, I did not know exactly where
these ideas might fit in, as I didn’t know much physics at the time.
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IV. String Theory

In 1984 I received phones calls from two physicists, Gary Horowitz
and Andy Strominger. They were excited about a model for
describing the vacuum state of the universe, based on a new theory
called string theory.

Gary Horowitz Andy Strominger
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String theory is built on the assumption that particles, at their
most basic level, are made of vibrating bits of strings – and
exceedingly tiny strings at that. In order for the theory to be
consistent with quantum mechanics (at least in some versions of
string theory), spacetime requires a certain symmetry built into it
called supersymmetry. Spacetime is also assumed to be
ten-dimensional.

Vibrating strings
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Horowitz and Strominger became interested in the
multidimensional spaces whose existence I proved, mathematically,
in my confirmation of the Calabi conjecture. They believed that
these spaces might play an important role in string theory, as they
seemed to be endowed with the right kind of supersymmetry — a
property deemed essential to the theories they were working on.
They asked me if their assessment of the situation was correct and,
to their delight, I told them that it was.
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Then I got a phone call from Edward Witten whom I’d met in
Princeton the year before. Witten believed that this was one of the
most exciting eras in theoretical physics, just like the time when
quantum mechanics was being developed.

Witten
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Witten was now collaborating with Candelas, Horowitz, and
Strominger, trying to figure out the shape, or geometry, of the six
“extra” dimensions of string theory. The physicists proposed that
these six dimensions were curled up into a miniscule space, which
they called Calabi-Yau space — part of the same family of spaces
originally proposed by Calabi and later proved by me.

With Candelas, 2001
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String theory, again, assumes that spacetime has 10 dimensions
overall. The three large spatial dimensions that we’re familiar with,
plus time, make up the four-dimensional spacetime of Einstein’s
theory. But there are also six additional dimensions hidden away in
Calabi-Yau space, and this invisible space exists at every point in
“real space”, according to string theory, even though we can’t see
it.

Calabi-Yau space
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The existence of this extra-dimensional space is fantastic on its
own, but string theory goes much farther. It says that the exact
shape, or geometry, of Calabi-Yau space dictates the properties of
our universe and the kind of physics we see. The shape of
Calabi-Yau space — or the “shape of inner space,” as we put it in
my recent book with Steve Nadis - determines the kinds of particles
that exist, their masses, and the ways in which they interact.
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Analyzing the spectrum of the Dirac operator of the
ten-dimensional spacetime would then reveal the variety of particles
that we might observe. Based on the principle of separation of
variables on this ten-dimensional spacetime, which is the product
of the four-dimensional spacetime with the six-dimensional
Calabi-Yau space, we know that part of the spectrum is determined
by the Calabi-Yau space. Particles with nonzero mass will be
extremely massive if the diameter of the Calabi-Yau space is very
small. We do not expect to observe any of these particles, as they
would only appear at incredibly high energies.
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But particles with zero mass are potentially observable and can be
calculated from the topology of the Calabi-Yau space. This gives
you an idea of why the topology of this tiny, six-dimensional space
could play an important role in physics.

While Einstein had said the phenomenon of gravity is really a
manifestation of geometry, string theorists boldly proclaimed that
the physics of our universe is a consequence of the geometry of
Calabi-Yau space. That’s why string theorists were so anxious to
figure out the precise shape of this six-dimensional space — a
problem we’re still working on today.
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Witten was eager to learn more about Calabi-Yau spaces. He flew
from Princeton to San Diego to talk with me about how to
construct them. He also wanted to know how many Calabi-Yau
spaces there were for physicists to choose among. Initially,
physicists thought there might only be a few examples — a few
basic topologies — which made the goal of determining the
“internal” shape of our universe seem a lot more manageable. But
we soon realized there were many more examples of Calabi-Yau
spaces–many more possible topologies - than were originally
anticipated. In the early 1980s, I guessed that there were tens of
thousands of these spaces, and that number has grown
considerably since then.
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The task of figuring out the shape of inner space suddenly seemed
more daunting, and perhaps even hopeless if the number of
possibilities turned out to be infinite. The latter question has yet
to be settled, although I have always thought that the number of
Calabi-Yau’s of any dimension is finite.

The excitement over Calabi-Yau spaces started in 1984, when
physicists first began to see how these complex geometries might
fit into their new theories. That enthusiasm kept up for a few
years, before waning. But interest in Calabi-Yau spaces picked up
again in the late 1980s, when Brian Greene, Ronen Plesser, Philip
Candelas, and others began exploring the notion of “mirror
symmetry.”
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The basic idea here was that two different Calabi-Yau spaces,
which had different topologies and seemed to have nothing in
common, nevertheless gave rise to the same physics. This
established a previously unknown kinship between so-called mirror
pairs of Calabi-Yau’s.
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The connection between mirror manifolds, which was uncovered
through physics, proved to be extremely powerful in the hands of
mathematicians. When they were stumped trying to solve a
problem involving one Calabi-Yau space, they could try solving the
same problem on its mirror pair. On many occasions, this approach
was successful. As a result, mathematical problems of counting
curves that had defied resolution, sometimes for as long as a
century, were now being solved. And a branch of mathematics
called enumerative geometry was suddenly rejuvenated. These
advances gave mathematicians greater respect for physicists, as
well as greater respect for string theory itself.
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Mirror symmetry is an important example of what we call a duality.
It sheds light on the deep geometry of Calabi-Yau space. It has also
helped us solve some very difficult questions of counting rational
curves of various degrees on the quintic, a Calabi-Yau manifold.
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This problem, named after the German mathematician Hermann
Schubert, dates back to the 19th century. Schubert showed that
the number of degree one rational curves on a quintic is 2,875. In
1986, Sheldon Katz found that there are 609,250 degree two
curves. Then around 1989, two Norwegian mathematicians Geir
Ellingsrud and Stein Strømme found that number of degree three
curves – based on algebraic geometry techniques –was
2,683,549,425.
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Relying on a string theory approach, a group of physicists, led by
Candelas, arrived at a different number, 317,206,375. The
physicists, however, had used a formula that, up to then, had not
been motivated by mathematical principles. As such, rigorous
justification of that formula still awaited confirmation by
mathematicians.
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In January of 1990, I organized the first major meeting between
string theorists and mathematicians at the urging of Isadore
Singer. The event took place at the Mathematical Sciences
Research Institute MSRI) in Berkeley. At this meeting there was a
somewhat tense debate regarding who was right, Ellingsrud and
Strømme or the Candelas team. The discrepancy between the two
camps lasted a few months until the mathematicians discovered a
mistake in their computer code. After they corrected that error,
their number agreed perfectly with that put forth by the physicists.
And ever since then, mathematicians have begun to appreciate the
depth of the insight provided by the string theorists.
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The episode also provided firm evidence that mirror symmetry had
a mathematical basis. It took several years but by the mid-to-late
1990s a rigorous mathematics proof of mirror symmetry-and a
validation of the Candelas, et al. formula —was finally achieved
independently by Givental and Lian-Liu-Yau.

The discussion on mirror symmetry is on the tree level of the
perturbation as only curves of genus zero are considered. We shall
now discuss the higher loop contributions.
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Given a Calabi-Yau space, one can associate a sigma model by
studying the space of maps from surfaces into the manifold (the
surfaces are the traces of the string vibration). One can associate
two different kind of super conformal field theories (a scalar
invariant quantum field theory that admits supersymmetries) to
the sigma model by certain twisting. One is called A model and
the correlation functions is related to the counting of algebraic
curves in the Calabi-Yau manifold. The algebraic curves appear as
instantons from the sigma model. They can be considered as
quantum corrections to the classical correlation functions. In
mathematics, they contribute to the Gromov-Witten invariants.
This is reasonably understood.
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The other one is called B model and is proposed by
Bershadsky-Cecotti-Ooguri-Vafa by suitable quantization of the
Kodaira-Spencer theory of gravity. The higher genus contribution
of the partition function of the A model of a Calabi-Yau manifold
is supposed to be the same as the partition function of the B
model of the Calabi-Yau manifold which is the mirror image of the
first one.
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Kevin Costello and my student Si Li recently formulated a
mathematical theory of perturbative quantization of
Kodaira-Spencer gauge theory. They have been successful in
carrying out the theory when the Calabi-Yau space is an elliptic
curve. And in this case, Si Li was able to verify the theory of
mirror symmetry to be valid for all genus and hence for all loops
for the corresponding quantum field theory.
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Mirror symmetry is a mysterious concept. However in 1996,
Strominger-Yau-Zaslow was able to reinterpret mirror symmetry,
based on the newly developed brane theory, in terms of T-duality.
Roughly speaking, we decompose the Calabi-Yau manifold by two
subclasses of three dimensional submanifolds. One set will consist
of 3-torus: S1 × S1 × S1. If we perform an operation similar to

r → 1

r

on the set of torus, we shall obtain the mirror manifolds.
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The SYZ construction is compatible with a proposal of Kontsevich
on mapping the derived category of one manifold into the Fukaya
category of the mirror manifold.
It has generated a great deal of important activities in the
mathematics community. The predictions look very good.
Gross-Siebert is giving a formulation of corresponding
constructions in algebraic geometry. The subject is taking on its
own life in mathematics.
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V. Conclusion

In the past thirty years, some extremely intriguing, as well as
powerful, mathematics has been inspired by string theory.
Mathematical formulae developed through this connection have
proved to be correct, and will always remain so, regardless of the
scientific validity of string theory. Although it is empirically
unproven, string theory now stands as the only consistent theory
that unifies the different forces. And it is beautiful. Moreover, the
effort to unify the different forces of nature has unexpectedly led to
the unification of different areas mathematics that at one time
seemed unrelated.
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We still don’t know what the final word will be for string theory.
However, in the past two thousand years, the concept of geometry
has evolved over several important stages to the current state of
modern geometry. Each time geometry has been transformed in a
major way, the new version has incorporated our improved
understanding of nature arrived at through advances in theoretical
physics. It seems likely that we shall witness another major
development in the 21st century, the advent of quantum
geometry — a geometry that can incorporate quantum physics in
the small and general relativity in the large.
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The fact that abstract mathematics can reveal so much about
nature is something I find both mysterious and fascinating.

In the case of string theory, geometry and physics have come
together to produce some beautiful mathematics, as well as some
very intriguing physics. The mathematics is so beautiful, in fact,
and it has branched out into so many different areas, that it makes
you wonder whether the physicists might be onto something after
all.

The story is still unfolding, to be sure. I consider myself lucky to
have been part of it and hope to stay involved in this effort for as
long as I can contribute.
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